Python from
Scratch

Programming for absolute beginners
with Python

Nilo Ney Coutinho Menezes

-_'_'_-3 LogiKraft

novatec



Authorized English translation of the Portuguese edition of Introdugdo a Programagdo com Python 4* Edigdo,
ISBN 97875228869 © 2024 Novatec Editora Ltda. This translation is published and sold by permission of Novatec
Editora Ltda, the owner of all rights to publish and sell the same. All rights reserved.

This edition is published by LOGIKRAFT SRL under exclusive license from the author, Nilo Ney Coutinho Menezes,
with the express authorization of Novatec Editora Ltda, the original publisher and rights holder of the Portuguese edition.

© 2025 Nilo Ney Coutinho Menezes - LOGIKRAFT SRL - Novatec Editora Ltda. All rights reserved.

No part of this publication may be reproduced, stored or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Publisher: Rubens Prates

Translator: Nilo Ney Coutinho Menezes
Proofreader: Ariane L. Smith and Kelsey Yurek
Cover designer: Olinart

Cover illustration: Olinart

Paperback: 978-85-7522-949-1
Hardcover: 978-85-7522-950-7
Ebook: 978-85-7522-951-4

Novatec Editora Ltda.

Rua Luis Antonio dos Santos 110

02460-000 — Sao Paulo, SP - Brasil

Tel.: +55 11 2959-6529

Email: novatec@novatec.com.br

Site: https://novatec.com.br

Twitter: twitter.com/novateceditora

Facebook: facebook.com/novatec

LinkedIn: https://linkedin.com/company/novatec-editora/

LogiKraft SRL

Rue de la Grande Campagne, 40
7340 - Colfontaine

Belgium

Email: contact@logikraft.be
Website: https://logikraft.be

DISCLAIMER

Every effort has been made to ensure that the information provided in this book is as accurate
and complete as possible. However, such information is provided “as is” and without warranty
of any kind, either expressed or implied. The author, publisher, distributors, and any entity
directly or indirectly involved in its dealings assume no liability whatsoever for any loss or
damage, direct or indirect, arising from the information contained in this book.




Table of Contents

Acknowledgments n
Preface 12

Introduction 14

Chapter 1: Motivation 17

1.1 Do you want to learn how to Program? ............ccccecreerememiesessesssessssssssesesesssssssssesssssesssennes 18
1.2 What is your patience level Like? .......c..covueevvuvnnecrverennee.
1.3 How long do you intend to Study? ..........coueeeerverecrerrennee.
1.4 To program for what? ............coeeevvonmervirnscecenseesieriens
1.4.1 WITHNE WED PAZES ....ovvveevereirerncieiseericeiss i sesssesesessesssssssssssssse s ssssssesssssesesssesssssssessssssssnes
1.4.2 Set YOUL CLOCK ....ooutiiriiiiriiiiiniii s sesssse s sssss s
1.4.3 Learn £0 USE MAPS......ccveuerimeveirimmiiiiessissessssesssssssssssssesssssessssssssessenes
1.4.4 Show your friends that you know how to program
1.4.5 SEEM WL ....coomevveerereeereererereiiseriesesees e sessssesesnesens
1.4.6 Better understand how your cOmputer WOIKS..............coucviurrivincrvessessenieessessssssssessesseneens
147 COOK c.oorieeireticeirceii i si s s sesss e
1.4.8 Save the WOIld ..........cvvverrvi s sssssss s sssssssssas
1.4.9 FIEE SOTEWALE ..c..vvvervecreriernecrriesneensisncessisnssssisssesessessesessesseessssssssssssmssssssssessssssssessssesseassssssnsssssssns
1410 Get FICh o
1.5 What do you do if you don't know how to solve something?
1.6 HOW t0 @SK fOI elP ..vccvveunervvererircriiceriecriecrnieseieecesisecsisneseresecsisnesssenenns
1.6.1 Common mistakes when trying to learn to program............cccoeeeeceeneerenerenesenereeseseeessennes
1.6.2 When will you have finished learning?............cc..couuvuniiinnsisisesssssssssssessessens 25
1.6.3 What 15 1€ally IMPOTTANT? ...oovuervvernnrrriirecrriisneresiesmesessesmsessssssesssssmessssssssessesssssesessssssessssnssssssons 25
1.6.4 What £0 aVOIA? w.ouuvnnvveieiicrviiisii s ssssisssssssssssssss s sssssssss s ssssssssss s sssssssssssssssssssssssas 26
L7 WRY PYERON? w..cooii e ssssse s sessss st essssssssesessesssssesssssesssssnes 26

Chapter 2: Preparing the environment 29

2.1 PYthOn iNSAllAtion ......ccveeecceeercevircceiieciiiecsieceeise s sseseesssesesss st ssssesssssesesssssssssesssssesessssessssssesens 29
2.1.1 Installation 0N WINAOWS ......c.ccuviiiiiicecceecsee ettt sse s bsss st sas s bnes 30




6 | Python from Scratch

2.1.2 Installation on Linux.....
2.1.3 Installation on macOS.......
2.2 Using the Python interpreter
2.3 Editing files .....oveervvverecrereoneeee.
2.4 VISUAL STUAIO COUE..ouruurvverriririiiriiciriisirsisessessssssssssse s ssssssssessssssssssssssssss st sssssssssssessssons
2.5 Be careful when typing yOUI PIOGIAMS .......ucvveermecrereermceemeermressesnmesesmismssssmesmeesessesmssessssmasesssssmsssssennessens 50
2.6 FIISE PIOGIAIMIS....ouiuuiiiiiiiiiiiiiiii it b bbb 50
2.7 Concepts of variable and aSSIGNIMENE ..........cvvvvermecrereererermiererermisesemmismcsssesnesessesssessessesssssmesssssenessens 53
2.8 A quick review of mathematical CONCEPLS .......vvummrreumrrrimecriireiincriee e seiieseseseessssesese s ssessessees 56
281 NUITIDETS ..ooovevverecverneriesseiesenessesisesssssesesssesssesesesssesase st sssss s esss et sesese st sss e srnen 56
2.8.2 Properties of addition and suDtIaCtioN.........cccuucceuererneceicirierrieceiecerisecesiseseseecsssesssiseseens 57
2.8.3 DIVISION PIOPEITIES....cuvvrivuieiiriiiiiisiieieiisieisesisesse st ssse b ssssse s sse st sbse st sss b sssesas 57
2.8.4 MUItIPIICAION PrOPEITIES...vuuueversicerisirrissreiisceriscrisseseseseestsseessssesssssesessseessssesssssesesessssssnessssssessses 59
2.8.5 Properties 0f the reMainder .........c.veceereeeecieereiseeeieseeeiseeesiee s ssssessssseessssesese st sssssessens 60
2.8.6 Rule of three and Proportion ..........ceeceeeceineeernecsieessiessssesssseesssssessssesesesessssnessssssessees 62
2.8.7 PEICENTAZE.....o.cvuvririiiriiiniiiisi bbb s 62
2.8.8 ATIRIMEHIC MEALL..oouuervvvvereriieiriei it sesseses s sss s ssss s sssss s 63
2.8.9 Weighted arithmetic MeAN ..........cc.ueveeereeecriereireieesetesesise s sesssessssesessse s sssssesssesessses 64
Chapter 3: Variables and data entry 66
3.1 VATADIE NMAIMES......ccvvvereerrrieraecereisseeseis s sesssseessssessessssss st ssss s sssesss s esss s sssss s ssss s sssssaees 66
3.2 NUMETIC VATADIES ...ovevevvernerrieneriiircriesisisseissecssessesesssesesessssssesssssesssssesssssesesssessssseesesssesssssessssnesssssnenes 67
3.2.1 Representation Of NUIMETIC VAIUES ......cvvuureeemerevemcerireeerisseesieessisessissesesesesesssesssssesesesessssnesssssneses 68

3.3 BOOLEAN VATTADIES .....oveveeverecrieneriiircriescerisseisnecesesssesessesese s ssess s ssssesessssesssesesssesssssssssssesssssneses 70
3.3.1 Relational OPEIAtOrS ....c..uucvuemererimmcrimneriiseseissesesisecsassesesisesessseessssesssssesesessssssesesssesesesssssssesssssneses 70
3.3.2 BOOLEAN OPEIALOIS.....ourveuruercimrciireeiineeiseeiieeeie i et st i ebs s bs bbb 72

3.3. 2.1 NOt OPEIALOL «.ucevirieiieriiici bbb 73
3.3.2.2 AN OPEIALOL ..uvvvrreerciieeiieciieeiie s siese s sss ettt ekttt 73
3.3.2.3 OF OPEIALOT c.ucoucevirieiiiici bbb bbb 73
3.3.3 BOOLEAN EXPIESSIONS ..vccvvrirverirrerrrssersseisseesiseessesssseessseesssse st et sissesssssssssessssesssseesssesssnsssssesssnessen 74

3.4 SEENG VATIADIES w...vvvvervvererircriiceiicsee i sessse st ess st s sb ettt 76

3.4.1 String OPEIAtiONS ....oeuiveuiieeiiiiiiiii s 77
3.4.1.1 CONCAENALION .oovvrvervrvrrciricisirissis s ss s 77
3.4.1.2 COMPOSILION .eucerrvrreeivriisiiiieniiiesie ettt e b ss sttt siens 78

304.1.3 SEING SHICING cevvvvrerrvereererrerrieesisessiesesesisesesssesesssese st s ssssesessses s sssssesese s ss s ssssessssseses 81

3.5 SEQUENCES ANA tHINE.....uerverrverceireerireeiireeiiee i sbsee b i se et bbb bbbkttt 82
3.0 THACING ettt sttt 83
3.7 Dt @NLIY (INPULS)..cvvvereevererrernererernerissesssesesssssessseseesesssesessssesssssessssssssssssessssssesesssessssssesssssesssssnessssnesssssneses 84
3.7.1 Data entry CONVEISION......oociiiiieiiciiiciiisiisiisssssessss s ss s ssss s ss s sssss s sasess 85
3.7.2 COMIMON MIStAKES .....ccvvrevercieriiieeiieeiieeiieeiie i seee it e ebs s ebs b bs s s sseseen 86

Chapter 4: Conditions

4.1.1 Income tax calculation example...............
4.1.2 Example of calculating a cell phone bill
4.2 €lSC.coernriericice s
4.3 NESEA STIUCTULS...vvvvreeveversecerresseeressesesessessesessessssesssssessssssseesassssses st ssssssessssessesssssssssssssssssssssssessons
B LI ookt




Table of Contents | 7

4.5 Inversion of conditions......c..cc.eeeeeereceens
4.6 Note of caution when comparing values

Chapter 5: Loops 103
5.1 COUNLETS covvvvrivsiisiiieiiti bbb bbb bbb bbb bbb 106
5.2 ACCUITIUIALOTS ..c.ovoveervveereeernesssesnsssssesesisseessssessessssssssssss s sssssssssssssesessssssssss st ssssss st sessssessssess 108

5.2.1 Augmented aSSIGNMENLS.........uvvuuurererrrrerrrieremisseesisnesesesessassesssesesessssesssssesesssessssnesssssesssssessssnes 109
5.3 INterrupting the rEPEtItioN ... cvveumeceeemcreireeriicerieersieessie st sssseseseseessses st sssssesssssesesenes 110
5.4 NESEA LOOPS.....cvuurirrerireeireeineeise sttt sisseeis s ebs bbb bbbt bbb bbb 112
5.5 F-SEIIIES covvverrerriirieiieiieeeesie st ssss s ss st st 114
Chapter 6: Lists, dictionaries, tuples, and sets 116
6.1 WOrking With INdeXES.........cvvummrvemmrerimerriereieceriecsiesssesessisnes s sssssesesesesessssesesssssssssessssnssssssessssnenes 118
6.2 COPYING aNd SHCING LISES.....vvrrvvvermervrrisnreriesserieireesisssssisessssessesessessessssssssesssssssssssssssessssssssessssesnens 118
0.3 LISE SIZE .vvvvveivsirsriisiinii s e 120
6.4 AAAING CIEIMENLS......oooreirrrererii i essees s sssessessssse s ssss st sssssssesssssssesessens 121
6.5 Removing elements from the TSt .........c..ovcvrruerinerirnecriecereseseeserisessseessesesssenecssesesssenenes 123
6.6 SEAICH.....ovvoree et 123
6.7 USING 0T covvvvverrreeerieierncriicisiesrissesiseessassesesesesesassessssse s st ssisesesssesese s ssssesesssesssssesssssessssssessssneses 124
6.8 Range........... w125
6.9 Enumerate...........cccueuene. . 126
6.10 Operations with lists.... . 127
6. 11 APPLICALIONS w.vovvvvrevereiereiire it eise i s bbb bbb bbb 127
6.12 LIStS WItH SETIIES. .vvevrevrvrvermeeeriesnereriesnsessesnsssssssaesessssssssssssssssssessesssssessessssssssasssssssssssssssessssssssessssesnens 129
6.13 LIStS WItHIN LISES .vvvvverereeeneririnnrriincriiscsrisesesescesessecsssssesssesssssesssssssssssesessseessssesssssssssssnessssnesssssnessssnnes 129
0.14 SOTTIINE covvvvvtiieiiicis s 131
6.15 USING LIStS @S QUEUES......vurervvereicreenicrriserrisnreieresassssseesesesesssssesssessesssssesesssesessssesssssssssssessssnessssssessssnenes 134
6.16 USING LISt S STACKS ..vvvvvverseververnereriisseriesnesssesssesssssssssisssssssssseesassessesssssssasssssssssssssssessssssssessssesnens 136
0.17 DICHONATIES ....vvviviiviiisiiiiii s bbb 137
6.18 DiICtiONATIES WIth LISES c..vveuvevcvvvessecrieiisnrerieseeereiseenssssssesssssessesassessessssssssasssssssssssssssessssssssessssesnens 140
6.19 Default value dictionaries ... .. 142

.. 142

6.21 Sets (set) ....... ... 146
6.21.1 Union ... .. 147
6.21.2 Intersection ..... . 147
6.21.3 DIEEIEIICE «.covvorverevermnicrrireriiss s ssssisse i sssissesssssissssessssssssss s ssss s sss s sessssssesesnens 148
6.21.4 SyMmMELTic diffEreNICE ..ouuuvverecreeeneeiercerieceii i ssse i srsssesesenes 148
6.21.5 Other OPEIAtIONS. ...vuvverseceresreisscesiseesiseeesssesesssseesssssssssesessssssissesess s st ssssessst s ssssesssssesesenes 149
6.21.6 WREI L0 USE SELS ..vevvvrverrerrerecrrisnereveseesisnereseseessssesessseesssssesssesesssssesesssesesssnessssssssssnessssseessssnessssnes 150

6.22 What data SIUCHUIE 10 USE? c.vvuumecveeesmereriesneermeesieresssssssssisnssssesseesassessesssssssessssssnesssssssmessssssssessssesnens 151

Chapter 7: Working with Strings 152

7.1 Partial String VeriiCAtiON. ... cvvereucrrierriereriecrsiecesiessisecssesessssnesesesssssssesesssesssssessssssessssnesssenes 153

7.2 Counting........cccceveveeeviennns

7.3 String search

7.4 POSHIONING StINES ....vvvvivveiiisiiiiii it ss s s s s 157

7.5 Breaking Or separating StriNES........occeuuueerererememremereersmmresisnessisnesssesesssssesesessesssnsssssessssnesssssessssnesssenes 158

7.6 StIING TEPLACCIIIENL ...ovververrverrnierresseecersisseeessessesessesseesssessesssessessessessessssssseesssssssssssssssessssssssesssssssasssssess 158



8 | Python from Scratch

7.7 Removing WhiteSpace CharaCters ........cwuucrrreieceriecrineeerisesiecesiessisesesssesesessessssesesesessssnessssnnes 159
7.8 Validation DY CONENE EYPE .....ouuuvvvumrererrriicirisriiererese i sesessesisesessse s sssssssssssesesssesssssssssssnesssssnes 159
7.9 StING fOrMALHIEG .ovvvvvreereiercerircriireeerieesiseeesisesssseseseseessssesesi s es s ebiss s ess st sbs s srisaes 161

7.9.1 FOrmMatting NUIMIDELS .........vvuumrveererreimrrienecesesesssssesesssesessssesssssssssssesssssessssssesssssesesssssssssessssnsssssnes 163
7.10 HANGMAN ..ot s 166
Chapter 8: Functions 170
8.1 Local and global Variables.............cicerrrireiiceiieseiisesisesesssessssnessssssssssnesssssssssssessssnesssennes 175
8.2 RECUTSIVE fUNCHIONS . .vevvevreveereerrvressaeersesssssesssssessssessssessesssssesssssss s ssssssesssssessssessessesssssssessssssssssssssns 176
8.3 VAIAALION ..o ssissesssesesesesssssesese e essss st 178
8.4 OPLIONAl PATAIMELETS c..vvvvvvreerernicriieereeeeise s sessseseseseessssesess i bbb st ess st es s enisaes 179
8.5 NamiNg PATAMELETS....uuviviriviiiiiiiiiiii bbb bbb bbb s 181
8.6 FUNCtions as @ ParamIEter ..o ss st saseas 183
8.7 Packing and unpacking Parameters...........occ.eeuerurercrrmmeremenerisnesessnessssnssssssssssnesssssssssssesssssesssennes 184
8.8 UNPACKING PATAMELETS......oveevernecrverreriscenisseesissssisesessseeesssessssssesissesssssssssssessssssssssesssssesessssessssnessssnnes 184
8.9 Lambda fUNCHONS ......uuurvverrreerrviiereiircriscesissessneseseseesssssesesess s sssssesssssesssssessssssessssssessssessssnesssssnes 185
8.10 EXCEPLIONS .ovcuvvtieiiiiiiiicii bbb bbb 186
.11 MOGUIES oot eses st 190
8.12 RANAOIM NUMDETS.....ovveveveereeriirciriisrrieesisssessesssssssssssss st sssessssessssssssssssessssessassssnsons 192
8.13 TYP@ fUNCHON. c.covereveerreeierrereseseeeneses s ssisssessssesesesssssesese st essss s esssssss s ess st sssse s 195
8.14 LiSt COMPIENEIISIONS ..v.vvvrerverricriirreriscsisseesissssisseseseseeessssesesiss e s sssss s sss s ess e sesss s snsnaes 197

8.15 GNETALOLS .....cuereuireeniisieiieri ittt s bbb bbb 200
8.16 Generator COMPIENENSIONS. ... .c.uuurevermerismcrrisrriserereseesiseeesissesiseeesssessisssesssesesssesesssesesesesssssessssnnes 203

8.17 DICt COMPIENEINSIONS ....ouvrvvrerverievererirerireeriseeriseesisessseeassesassesssesssse st st ssssesbssessssesssseessseesssessssessssessen 204
8.18 Set COMPIENENSIONS ...vvrvvererverricrisrreriseerisseesissssisseseseseesssesssiss e esssssssss s s ess st sssessnisaes 204
8.19 MAP Q1A ZIP vvvrvevvreevirritneiieesieesiee it bbbt 204
8.20 REAUCE w..ovvrveververseiriisseriiseseis e sssisse s sssesss s s s st 206
.21 T ottt bbb 208
8.22 Partial application Of FUNCHONS .....c.veuucveemcrrirriiecericeriseeesisesiee s ssssesesessesesssesesesessssesssssnes 209
8.23 Mathematical fUNCHIONS. .........cvvurriecriecerierriieserese e sesise s ssess s sesese et esssesssesees 210
8.23.1 WATUS OPEIALOT «...ovvreeverecrercermseesieesiseesisessisesese st s s essse bt esi s snssssssaes 212
Chapter 9: Files
9.1 OPCNING fIIES c.ovvvveererireiircerercriieseri i sesese s sese s ese st
9.2 The command line
9.3 Basic commands in WINAOWS ........cuuuruucrrirmieremenermiesesesessisnesssssessssnsssssessssnesssssssssssessssnesssennes 220
9.4 Basic commands in LINUX/MACOS.......vvvverrrmerirmiresensessssssssssessssnesssssessssssssssesssssssssssssssssssssons 222
9.5 ComMMANA LINE PATAIMELETS ...vouevvereceererirerirerisesiseessseessesisseessesssse st ssssessssessssessssessssessssessssessssesses 224
9.6 GENETALING FIIES ... rvvverrererierreriirerrisessise s sssess s sss s ses s ses s sne s srsene 224
9.7 Reading and WITtING......c...eveveurreereriecrieeesisesrisesesesesssssesesess s sssssesssssesssssssssssesssssesssssnessssnesssesnes 225
9.8 PrOCESSING @ f11€ .vvvvecrvernireiecerirciiieeeiie s esese st esi st 226
9.9 HTML GENETAION ..c.vovviereierriiriiesiisesiisiis s ssss bbb s b s sas bbb 230
9.10 Files And dIiT@COTIES ......vvvereurrvreeseeerressniersismssessissaessssessesessessassssssesssssssessssssssessesssssesssssssesssssssassssssns 233
9.11 A DIt @DOUL tITIC ... vveeeerevereererncriirericreisc s seissesesesesrsasesesess e esess s esessssssesessesese st ssesesssesees 237
9.12 TUSE O PALNS .ovveveerereirceiiceiisceiieeesi s eses st bb bbbt 240
9.13 PAtBLID oottt bbb 241
9.14 Visiting all subdirectories TeCUISIVELY........ucvvuwuumrrvverreriereeriesensisssessessessessessesssssssesesssssasssssons 242

9.15 DAte ANA tIIMIE ..ottt ettt bbbt a et s et n b a et b s tens 243



Table of Contents | 9

9.15.1 Time zones....... o 245
9.16 JSON files............... e 246
9.17 Binary files..... o 248
Chapter 10: Classes and objects 257
L10.1 BEEOTE ODJECES...uvvverrecrremirerirnerisnessiseseiseseseseesiseessssesess st ssssesessse bbb sssssesssesenen 257
10.2 Objects as a representation of the real WOIld ..........ccc.evveeveeenerriereienereriereineeeiesesecssesesesenesenes 259
10.3 PasSing PATAMICTELS......cuciuivrieiiiniieiiiseiissse s ssss s sssss s sss s ssss s ss s s sssssaes 262
10.4 A DANK EXAMIPLE ....vvvvverciirerireriseise it seeiseessse e sse bbbttt bbb 266
10.5 Inheritance ............coveveverneeeveeinnecnnns ... 270
10.6 Developing a class to control lists....... w272
10.7 Class attributes and methods.......... .. 283
10.8 Revisiting the phonebook....... ... 285
10.9 Creating eXCEPLIONS. .....vuuvureemiesireeresereeeeeesesssesssessessss st ssse s s s s sssesssesssss s sssssssenssesssesssssas 289
Chapter 11: Database 291
111 BSIC COMCEPLS....rvuverivriiiiiiireiiiieisiieie sttt ssst bbb st sisenaes 291
112 SQLovviiiitirrsviisssissssssssssesssssssssss s sssssssss s sssssss s sss s R0 293
11.3 Python & SQLite 293
11.4 Querying records . 298
11.5 Updating records ... 300
11.6 Deleting 1ecords ...........comeeeveerrcereennen. w302
11.7 SImplifying access WIthOUL CUISOTS.........cvuuuevemmreeerrerereriincesisesrsssesesesecessssesessssssssnessssnessssssessssneseses 302
11.8 Accessing fields as in @ diCHONATY.........rereerreemiirermessssisesessessessessessssesssssssssesnssssssssessssessesens 303
11.9 Generating @ Primary KEY ........cvccuueveuereuereerimeresineesesssssnesssssesssssesesssesessssessssssssssnessssnessssssessssneseses 303
11.10 Changing the table ... sssissessssessssessesssssssssssssssssssssssssessssssseesens 305
11,11 GrOUPING dALA....couuuervrererrrirmerisncesesesriseseseseceresesssssesssesesssssessssssesssssesesssesessssesesssesssssessssnessssssessssneseses 305
11.12 WOTKING With dates .......uuvveeemereriiririincreriisreeniiensssssssssssessssessessesssssasssssssssssssssssssssnsessssssnesens 308
11.13 Keys and Felations ........cuueuceeemceremereiereiercsiisessiesesesssssnesssssesssssesssssesessssessssnsssssnessssnessssssessssnessses 311
11.14 Converting the phonebook to use @ database ............comeerverrrreeerrrrieeserieereersissesissessssesnesens 313
Chapter 12: Patterns 322
12.1 Pattern reCOGNItION ......cciiiiiiiiiii s 322
12.2 REGUIAL EXPIESSIONS «.cvvvrreerrverseiersessecrersesmesessssneesssssmesessssssessssssssssssessessessassesssssssmesssssssmessssssnsssssessesens 329

12.2.1 FINAING SEQUEIICES ....vvunevvereirrirseeverecrrimneresereesissesssesesssssessssseessssssssssessssssssssnsssssnessssnesssssnessssneses 333

12.2.2 GIEEAY CAPLUIE....orverrvveermecrrrersnerrrissaeessessessessessasessessessssessesessessessssssseesssssssassssssssessssssssesssssssesens 335

12.2.3 Compiling regular eXPIeSSIONS ...........vwwermeremmrrremersimmrriesessisnesesersesssnsssessssssmessssnecssssnessssnenes 336

12.2.4 Capturing multiple groups and SUDZIOUPS ..........vervecrermermrrermesreeriesmresssanmssssesnsessssessensens 337

12.2.5 When t0 USe regular eXPIeSSIONS........wwwereeresmerrremermimmerriesessesnesesereresssssssessssssmessssnecssssnessssnenes 338
12.3 Structural pattern-matChiNg.........couecveeuecrermerereemiinermersssisnesessesmssessesssssssssesssssesmssssssnsssssesnesens 339
Chapter 13: Graphical interface 344
13,1 A fIISE PIOGIAIM c.ccverrirrerererirncrisscesesesrissesesesecesessessseseseses s st sesssesess st esiesese st sssssesessneseses 345
13.2 COUNTNG CHCKS cvvvvreeerrerrmirerresmeeermismesessisncsessesseeesssssesessssssesssssssessssessensassssmesssssssmessssssnmessssssnsessssssnesens 347
13.3 USING CLASSES ..vvvvvvvrverivirsisiviissisis i ssssss s ssssss s sssss s ssssss st ssss s s 348
13,4 AQQING COUNLETS c.vvvvvrrrrerrnrrrrirmireriisnesensesssesiesseeessssmessssssssessssssessssessesassessessssssmessssssssessssssnsessssesnesens 350

13.5 ENLEIING Ata....ertrrerrrrrerririrericesisesriseseseseesesssssesesesesesssssessssssesssssesesssesessssesessssesssnessssnessssssessssneseses 351



10 | Python from Scratch

13.0 DIAWING ..oouvviiniiiiiiiiiiii s s s s
13.6.1 Drawing a cursor With lINES ......c...eveurecueecimneciiceieceieseiiecesiseessisssesisecssssesssssesesssessssnees
13.6.2 DIQWING LINES ...t sesee e sssaseesssssesesessssssseseseses s sssseessssseseseseessssnens
13.6.3 MOTE t0OLS....uvvvvvvermeiivierneirieseeiissesssssssssssssssssssssesasssssessesssssssssss st sssssessssssssssesssssesssssssens
13.6.4 Cleaning and UNOING ............oecveuereuereriereieresiisesisessesesesessssssesssssessssssessssssesssssesssesessssnens
13.6.5 COLOTS..ouuurrverrniiriircriessersesissssiss st ssss s sesss st et

13.7 A WEDSIte dataDaSe ..........vvuemecveerrriiriiiceiieseiiseii s ssess st sse s
13.7.1 SIE ClASS vvvverreverrerneereessensesssesssssessssssssssssssssssssesasssssssesss s sssss st st sesse s
13.7.2 The ROIME SCIEEM......cvvumireemrireierereisreiesiereseseseee i sesasssssssesesessssssesese s sss s ssssesesssesesesesssssnens
13.7.3 The details SCIEEI .......uuuuuurvvverrreiirreriieeriisensie s sesssssssssss s sesssssssssesses
13.7.5 Integrating with the Program.........cccreree s sssssesesesessssnens
13.7.6 COMPLEtING the QPP .cvvurervermrriircreireriiireerieessiseeesieessiseeesssesesessesssessse s esisesssssesssssesessssessssnees

Chapter 14: Next steps

14.1 Functional programming.........cc.eeeeremereummremessmssmecssesnessssnesssessssssnesssesessssnessssnessssnessssnsssssnesess
14.2 AIGOTIERINIS 1ovecvvevvcveecericrisc it sess st sri bbbt bbbt
143 GAIMIES coovivvieviiiiiii s bR
14,4 OBJEC OTIENEALION ..vvvvverecversicrriseerisereieseeriseeessesese et ssissesesssessssss st ese st s esssssessesens
L14.5 DAtADASE w..cvovevvverecrreercirirerissc e ssisesesessssissesessses st sssses sttt
14,6 TWED SYSTEIMIS .cvvvvvecveeneeresserisncesssesssseseseseessssesessesese st s bbbt bbb ensseens
14.7 Data science and artificial IntellIGENCe ........cvvuurvveereucrriereisecriecseiine s ssesessisesesssecssesnesens
14.8 Other PYthon HDIaries.......ecuumereumereieecrineeeiiresisecssineessisessssseessssessssessssssesssnessssnesssssessssnsssssesees
14.9 MAIING TSES..vvvvvvrveererererncriscireneneisreseseessssesesssssssesssssessssssesessssssssesssssesssesssssssesssssessssssesssssesssssnesens

Appendix A: Error messages

ALT SYNEAXEITOT cooovitireereeciecieeie sttt sisessss s et e s
A2 TANEAtIONETITO ...ttt sttt sttt b sttt a s e e s sas s sas s s sestnes
ALBKEYELTOL .ottt e e s
AL NAMEETTOT ..ottt bbb bbbt b bt et b b as bbb s as bbb sasaebebesanantas
ALD VALUEEITOT ..ottt sss s s ss s sae s sss st s sae st sas st sas s sasssensnns
ALD TYPEETTON oot bbb
A7 INAEXEITOT ..ot ss s sa s sa s st sss st s sses s sas st sas s s sasssensnns
ALB TADEITOT oottt sttt ettt et et a e as s s s s st s tnes

Appendix B: Bitwise operators

B.1 DISPIACEINIENLS w..vvvrvcverrieriseeriseeiiseesissesessssesiseeassses st s sssssesess s ess bbb ess s
B.2 BItWISE OPEIALOLS. ... cvueveriirieiircisiieisenitierssitie ittt ss s sb sttt

References

Index




Acknowledgments

This book wouldn't be possible without the encouragement of my wife, Emilia Christiane, and
the understanding of my children, Igor, Hanna, and Iris. Writing in summer isn't always easy
for those who live in a cold country like Belgium.

I am also grateful for the support I received from my parents and grandparents during my stud-
ies and for their valuable advice, understanding, and guidance.

I couldn't forget my brother, Luis Victor, for his help with the images in Portuguese.

Thanks to my wife Chris and my daughter Hanna for their help reviewing the book, asking
about and marking errors, reading and rereading until the text is ready to be revised again.

Luciano Ramalho and colleagues from the python-brasil list. Luciano, thank you for the encour-
agement to publish this book and for the more than pertinent comments. To the python-brasil
community for their efforts and proof of civility in keeping the discussions at the highest level,
pleasing beginners, curious people, and computer professionals.

Not to forget the team from Editora Novatec, with whom I have been working for over ten years
and who never cease to amaze me in terms of their professionalism and seriousness, operating
in a competitive and globalized market without ever losing the conviction to publish technical
works in Portuguese.

Thanks also to colleagues, friends, and students at the Matias Machline Foundation, where I
had the opportunity to study and work as a teacher of programming logic. Thank you to friends
and colleagues from the La Salle Educational Center and the Paulo Feitoza Foundation (FPF
Tech), where I taught programming logic and Python courses for many years.

11



Preface

I learned to program using the BASIC language back in the mid-1980s. I remember building
small drawing programs, phone books, and games. Data storage was only available on cassette
tapes. Before the internet and living in northern Brazil, learning to program involved reading
books and, of course, programming. The most common way to obtain new programs was through
programming magazines, which were dedicated to the new community of microcomputer users,
a term used at the time to differentiate home computers from bigger commercial alternatives,
called mainframes or mini-computers, used by big companies and costing thousands of dollars.
They included complete listings of programs written in BASIC or Assembly. At a time when
downloading was barely a distant dream, typing these programs was the only solution to run
them. The experience of reading and typing the programs was essential for learning to program,
but unfortunately, few technical magazines today are accessible to beginners. The complexity
of today's programs is also much much greater, requiring more time studying than in the past.
While the internet greatly helps, following a planned learning order is very important.

When starting to teach programming, the challenge was always finding a book that students
could read in high school or early in higher education. Although several works fulfilled this
need, handouts were always necessary since the order in which the new concepts were presented
was almost always more designed for a dictionary than for teaching programming. Concepts
important to the beginner were forgotten entirely, and a greater focus was given to more com-
plex subjects.

Following an idea that my high school teachers presented and used, programming logic is more
important than any language, so those who learn to program once are better equipped to learn
other programming languages. This book focuses on presenting Python resources whenever
possible. The purpose is to initiate the reader into the world of programming and prepare them
for more advanced courses and concepts. After reading and studying this book, I believe you
will be able to read other programming texts and learn new languages on your own.

More than thirteen years have passed since the first Brazilian edition of this book. The book
was written to help people learn to program independently at home, with little or no help. The
task is not simple; each person has a different experience when learning to program. One of
the factors that I find most interesting is that difficulties occur at different times and places.
Each revision and new edition reflects the comments I collect in various Internet groups and
when talking to readers of the book, especially those who send questions by email. Without this
exchange of experiences, it would be even more challenging to improve and correct the book.

12



Preface | 13

The Python language grew tremendously during that period, and the easy and powerful nature
of the language has been confirmed several times. Today, Python is highly regarded in aca-
demic, scientific, and professional circles. The purpose of this book has always been to teach
programming, with Python as a valuable bonus gained in the process. I believe that the rules of
programming are independent of the language itself. Still, when choosing Python, I knew that
it would be a great investment of the reader's time, and they would simultaneously learn new
techniques and a language that they could continue using after finishing the book.

As time has gone on, the book has become more Pythonic. The goal is to first show the concept
without using everything from Python a few times. As you move toward the end of each chapter,
you will encounter programs that increasingly use the resources of the language. Some sections
have been revised to contain more details about mathematics and links to get more information.
The same was done with more advanced resources and formal aspects of computing that would
not fit in this book but are mentioned to allow the reader to continue learning more complex
concepts in other texts.

No book or course can teach you everything about programming since it is a vast area that
continues to expand rapidly. Thus, this book aims to create a solid base for programming
students, enabling them to read other texts and select other courses that they want to take.
Learning programming is an infinite process, and even though I have been programming for
over 30 years, I continue to learn every day. My objective remains the same: to teach how to
program with Python.

I hope you continue to send your questions, suggestions, and critiques by email or Telegram.
Do not hesitate to comment if you like the changes or if anything is unclear.



Introduction

This book was written with the programming beginner in mind. Although the Python language
is very powerful and rich in modern programming resources, this work aims to teach the logic
and programming techniques needed to program in any language. Some Python language
resources have not been used or have been postponed in favor of programming logic exercises.
The goal was to prioritize these exercises and better prepare the reader for other languages.
That choice didn't stop powerful language features from being presented, but this book doesn't
intend to cover everything about Python.

The chapters are organized in such a way as to present the basic programming concepts progres-
sively. It is highly recommended that you read the book near a computer with the Python inter-
preter open to facilitate experimentation with the proposed examples. Some readers have found
success with Python interpreters installed on their cell phones, but a computer is recommended.

Each chapter includes exercises organized to explore the content presented. Some exercises only
modify the examples in the book, while others require the application of the concepts presented
to create new programs. Try to solve the exercises as they are given. While it's impossible not to
talk about math in a programming book, the exercises are designed for a high school student's
level of knowledge and use business or everyday problems. This choice was not made to avoid
studying mathematics but to prevent mixing the introduction of programming concepts with
new mathematical concepts. It is highly recommended that the reader solve each exercise before
moving on to the next chapter.

Organizing the generated programs in one folder (directory) per chapter is recommended,
preferably by adding the example or exercise number to the file names. Some exercises alter
others, even in different chapters. Ensuring these files are well organized will facilitate your study.

Appendix A has been prepared to help understand the error messages that the Python interpreter
can generate. Use it whenever you find new errors in your programs. With practice, you will
learn how to recognize these errors and locate them in your programs.

Python also allows students and teachers to use the operating system of their choice, whether
Windows, Linux, macOS, or those found on even mobile phones. All examples in the book
require only the standard language distribution, which is available free of charge.

14



Introduction | 15

While every effort has been made to avoid errors and omissions, the book is not guaranteed
to be error-free. If you find flaws in the content, please email errors@pythonfromscratch.com. If
you have any questions, although I can't guarantee a response to every email, please send your
message to questions@ythonfromscratch.com. Tips, critiques, and suggestions can be sent to
teachers@pythonfromscratch.com. The source code, solved exercises, videos, and possible cor-
rections to this book can be found at https://pythonfromscratch.com.

The author is also available via Telegram on the channel dedicated to the book (https://t.me/
pythonfromscratchbook), but the response time may vary depending on the author's free time;
don't expect immediate answers, except from other readers on the same channel.

A summary of each chapter’s content is presented below:

Chapter 1 — Motivation: Aims to present the challenge of learning and stimulating
the study of computer programming, presenting everyday problems and applications.

Chapter 2 — Preparing the environment: Installation of the Python interpreter,
introduction to the text editor, presentation of IDLE, execution environment, how to
type programs, and how to do the first tests with arithmetic operations in the inter-
preter. Optionally, you can also install Visual Studio Code to type your programs. A
quick review of mathematical concepts has been included in this chapter to facilitate
understanding and solving the exercises.

Chapter 3 — Variables and data entry: Types of variables, properties of each type,
operations, and operators. It introduces the concept of a program over time and a
simple debugging technique. Keyboard data entry, data type conversion, and common
errors.

Chapter 4 — Conditions: Conditional structures, the concept of the block, and the
selection of lines to execute based on evaluating logical expressions.

Chapter 5 — Repetitions: while loop, counters, and accumulators. The execution of a
block and nested loops.

Chapter 6 — Lists, dictionaries, tuples, and sets: Operations with lists, sorting using
the bubble sort method, searching, using lists as stacks and queues. Examples of using
dictionaries, tuples, and sets.

Chapter 7 - Working with strings: Presents advanced operations with strings. Explo-

res the Python string class. The chapter also includes a simple game to reinforce the
concepts of string manipulation.

Chapter 8 — Functions: Notion of function and transfer of execution flow, recursive
functions, lambda functions, parameters, and modules. It presents random numbers.
Chapter 9 — Files: Creating and reading files on disk. Generation of HTML files in
Python, operations with files and directories, command-line parameters, paths, and
manipulation of dates and times. Creating and reading JSON files.

Chapter 10 - Classes and objects: Introduction to object orientation. Explains the
concepts of class, objects, methods, and inheritance. It prepares the student to conti-
nue studying the topic and better understand it.

Chapter 11 — Database: Introduction to the SQL language and the SQLite database.

Chapter 12 — Patterns: Pattern recognition, regular expressions, and Python's match
statement.



16 | Python from Scratch

o Chapter 13 — Graphical interface: Introduction to programming graphical inter-
faces with tkinter. Create simple interfaces with buttons, a drawing utility, and a site
manager.

o Chapter 14 — Next steps: The final chapter lists the next steps in various topics, such
as games, web systems, functional programming, graphical interfaces, and databases.
It aims to present books and open-source projects that students can use to continue
studying, depending on their area of interest.

« Appendix A — Error messages: Explains Python's most frequent error messages, sho-
wing their causes and how to resolve them.

o Appendix B — Bitwise operators: Supplementary material for computer science and
electronic engineering students interested in bit manipulation in Python.

Contacts and groups

By email:
errors@pythonfromscratch.com
questions@pythonfromscratch.com

teachers@pythonfromscratch.com

Telegram:

https://t.me/pythonfromscratchbook

Book’s website
Address: https://pythonfromscratch.com

The book's website contains all the book listings as well as all the solved exercises. You will
also find videos and possibly corrections (errata).



CHAPTER 4
Conditions

To execute or not to execute? That'’s the question.

Here's the thing...

Not every line of our program will be executed. It will often be more interesting to decide which
parts of the program should be executed based on the result of a condition. The basis of these
decisions will consist of logical expressions that allow us to represent decisions in our programs.

The conditional execution of parts of the program is one of the fundamentals of computer
programming. These conditional structures allow your program to work differently, depending
on the values entered by the user.

In this chapter, you will encounter programs that are not executed in the same sequence as their
lines. We will see how to skip some parts, depending on values and conditions. Logical expres-
sions will represent conditions and decisions that must be made before executing a part of the
program. The conditional structures we'll examine in this chapter will allow your program to
react and produce different outputs for different data inputs.

4.1if

The conditions serve to select when a part of the program should be activated and when it should
simply be ignored. In Python, the conditional structure is the if. Its format is presented below:

if <condition>:
True block

if is nothing more than our "if" as in English. We can then understand it as follows: if the
condition is True, do something. Remember that condition is a logical expression, as we saw
in Chapter 3.

89



90 | Python from Scratch

Let's look at an example of a program that reads two values and prints which one is larger:

# Program 4.1: Reads two values and prints which one is the highest
a = int(input("First value: "))
b = int(input("Second value: "))
ifa>b: @
print("The first value is the highest!") @
ifb>a: @
print("The second value is the highest!") @

In @, we have the condition a > b. This logical expression will be evaluated, and if its result is
True, line @ will be executed. If False, line @ will be ignored. The same is true for condition
b > aonline @. If your result is True, line @ will be executed. If it's False, it will be ignored.

The program execution sequence changes according to the values entered as the first and sec-
ond values. Type in Program 4.1 and run it twice. The first time, type a larger value first and a
smaller value after it. The second time, invert these values and verify that the message on the
screen also changed.

When the first value is greater than the second, we have the following lines running: @, @,
©. When the first value is smaller than the second, we have another sequence: @, ®, @. It is
important to understand that the line with the condition itself with the if is executed even when
the result of the expression is False.

Let's see how this program behaves. The executed lines are marked with a gray background.

Figure 4.1 shows the execution (on a gray background) when a is smaller than b. The code
with the white background was not executed. In the example, a is 1 and b is 3. In this case, the
second value is the largest.

int(input("First value: ")) ]

a
a [b int (input("Second value: "))
if a > b: )@

rint("The first value is the highest!") @
bl 3| (ifb>a:)®
(print("The second value is the highest!")}]®

Figure 4.1: Execution example (in gray) when a is smaller than b

TRIVIA

Graphical code representation can help with understanding algorithms; a long time ago,
we used flowcharts to learn how to program. Flowcharts are graphical representations of
a program. They worked relatively well in "unstructured” programming when a program's
execution could jump to any line. In the 1970s and 1980s, structured programming (with
blocks and functions) became more used, and flowcharts were left out. A flowchart offers a
lot of freedom when creating a program since you can pass lines to any part of the program.
Structured programming organizes the program in blocks, as we did with if and does not allow
jumps from one part of the program to another, except when following well-established rules.

To learn more about structured programming: https://en.wikipedia.org/wiki/Structured_
programming.

And what happens when a is greater than b?



Chapter 4: Conditions | 91

Figure 4.2 shows the lines executed when a is greater than b. Notice that now @ is executed
but @ is not.

a = int(input("First value: "))
a3 b = int(input("Second value: "))
(if a > b:)®

(print("The first value is the highest!™)) @
bl 1 (if b > a:)®

print("The second value is the highest!") @

Figure 4.2: Execution example (in gray) when a is greater than b

Notice that lines @ and @ ended with the colon (:). When that happens, we have the announce-
ment of a block of lines to follow. In Python, a block is represented by moving the beginning
of the line to the right. The block continues to the first line with a different offset. To move the
text to the right, use spaces, usually four spaces for each level of indentation. See Figure 4.3 for
the two blocks of code that we created by advancing the text to the right.

a

int(input("First value: "))
b = int(input("Second value: "))
if a > b:

indent»{ print("The first value is the highest!")]} Block
if b > a:

indent+[ print("The second value is the highest!" )]} Block
Figure 4.3: Blocks and text feed

Notice that we started writing line @ a few more characters to the right of the previous line @
that started the block. As line @ was written farthest to the left, we say that the block of line @
has been completed.

TRIVIA

Python is one of the few programming languages that marks the beginning and end of a
block by moving text to the right (indentation). Other languages have special words for this,
such as BEGIN and END in Pascal or the famous curly braces ({ and }) in C and Java. While
offsetting to the right using white spaces makes our code more elegant, typing our programs
requires greater care.

Exercise4.1 Analyze Program 4.1. What happens if the first and second values are the same?
Explain.

Let's look at another example, where we will request the age of the user's car and then write new
(if the car is less than three years old) or, otherwise, old.

# Program 4.2: New or old car, depending on age
age = int(input("Enter the age of your car: "))
if age <= 3:

print("Your car is new") @
if age > 3:

print("Your car is old") @



92 | Python from Scratch

The first condition is age <= 3. This condition decides whether the line with the print @ func-
tion will be executed. As it is a simple condition, we can understand that we will only display
the new car message for ages 0, 1, 2, and 3. The second condition, age > 3, is the inverse of the
first. If you look closely, there isn't a single integer that would make both true simultaneously.
The second decision is responsible for deciding to print the old car message @. Run Program
4.2 and check what appears on the screen. You can run it multiple times with the following
ages: 1, 3, and 5.

While it's obvious that a car can’t have negative values for age, the program doesn't address that
issue. We'll change it later to check for invalid values.

Exercise 4.2  Write a program that asks the speed of a user's car. If it exceeds 80 km/h, dis-
play a message stating that the user has been fined. In this case, show the amount of the fine,
charging $5 per km above 80 km/h.

A block in Python can have more than one line of code though the last example shows only two
blocks with one line in each. If you need two or more lines in the same block, write those lines
in the same direction or the same column as the first row of the block.

4.1.1 Income tax calculation example

A common problem is when we must pay income tax. Normally, we pay income tax by salary
range. Imagine that, for salaries lower than $1,000, we would have no tax to pay, a 0% rate. For
salaries between $1,000 and $3,000, we would pay 20%. Above these amounts, the rate would be
35%. This problem would be very similar to the previous one unless the tax was not charged dif-
ferently for each band. That is, those who earn $4,000 have the first $1,000 exempt from tax, 20%
paid on the amount between $1,000 and $3,000, and 35% paid on the rest. Let's look at the solution:

# Program 4.3: Income tax calculation
salary = float(input("Enter the salary for tax calculation: "))
base = salary @
tax = 0
if base > 3000: @
tax = tax + (base - 3000) * 0.35 @
base = 3000 @
if base > 1000: @
tax = tax + (base - 1000) * 0.20 @
print(f"Salary: ${salary:6.2f} Tax payable: ${tax:6.2f}")

Program 4.3 is very interesting. Try running it a few times and compare the printed amount
with the amount you calculated. Trace the program and try to understand what it does before
reading the next paragraph. Check what happens for salaries of $500, $1,000, and $1,500.

In @, we have the base variable receiving a copy of the salary. This is necessary because when
we assign a new value to a variable, the previous value is replaced (and lost if we don't store it
elsewhere). Since we are going to use the amount of the salary entered to display it on the screen,
we cannot lose it; therefore, an auxiliary variable called base is needed here.

In @, we verify that the base is greater than $3,000. If true, we execute lines @ and @. In @, we
calculated 35% of the amount greater than $3,000. The result is stored in the tax variable. As



Chapter 4: Conditions | 93

this variable contains the amount to be paid for this amount, we will update the base amount
to $3,000 @ since what exceeds this amount has already been charged.

In @, we verify that the base amount is greater than $1,000, calculating 20% tax in @, if True.

Let's look at the tracing for a salary of $500:

‘ salary base tax ‘
‘ 500 500 0 ‘
For a salary of $1,500:
salary base tax
1500 1500 o
100
For a salary of $3,000:
salary base tax
3000 3000 5}
400
For a salary of $5,000:
salary base tax
5000 5660 5}
3000 760
1100

Exercise4.3  Write a program that reads three numbers and prints the largest and the smallest.

Exercise 4.4 Write a program that asks for the employee's salary and calculates the amount
of the rise. For salaries above $1,250, calculate a raise of 10%. For those equal or lower, 15%.

4.1.2 Example of calculating a cell phone bill

The following program calculates the monthly fee for a cell phone operator called Bye. The
operator in question has only two plans: LittleTalk and TalkMore. Under the LittleTalk plan,
the consumer is entitled to 100 minutes, which are included in the $50 monthly plan. Each
extra minute (in addition to those included) costs $0.20. In the TalkMore plan, 500 minutes
are included for $99 and each extra minute costs $0.15.

Let's look at a program that asks for the plan and the number of minutes consumed. With this
information and using what we just discovered about the plans, the program will calculate and
print the price to pay. Note that if the plan is neither LittleTalk nor TalkMore, the program does
not calculate any price.



94 | Python from Scratch

# Program 4.4: Calculating the monthly fee for a cell phone plan from the operator Bye
plan = input("What's your cell phone plan? ")
if plan == "LittleTalk":
minutes_on_plan = 100
extra = 0.20
price = 50
if plan == "TalkMore":
minutes_on_plan = 500
extra = 0.15
price = 99
if plan != "LittleTalk" and plan != "TalkMore":
print("I don't know this plan")
if plan == "LittleTalk" or plan == "TalkMore":
minutes_consumed = int(input("How many minutes did you consume? "))
print("You will pay:")
print(f"Plan price ${price:10.2f}")
supplement = 0
if minutes_consumed > minutes_on_plan:
supplement = extra * (minutes_consumed - minutes_on_plan)
print(f"Supplement ${supplement:10.2f}")
print(f"Total ${price + supplement:10.2f}")

Let's look at the blocks highlighted in Figure 4.4:

plan = input("what's your cell phone plan? ")
if plan == "LittleTalk":
minutes_on_plan = 100
extra = 0.20 -
price = 50

if plan == "TalkMore":
minutes_on_plan = 500
extra = 0.15

Blocks

price = 99
if plan != "LittleTalk" and plan != "TalkMore":
[print("I don't know this plan")]
if plan == "LittleTalk" or plan == "TalkMore":

minutes_consumed = int(input("How many minutes did you consume? "))
print("You will pay:")

print(f"Plan price ${price:10.2f}")
supplement = 0

if minutes_consumed > minutes_on_plan: v

print(f"Supplement ${supplement:10.2f}")
print(f"Total ${price + supplement:10.2f}")

Figure 4.4: Featured blocks

Notice that the line that calculates the supplement is a block within another block. When one
structure appears inside another, we say that they are nested. Python allows you to create blocks
within blocks freely. That way, an if can contain other if structures and other statements with-
out any problems.

Also, note that the lines outside the block are aligned with each other. The first four if all start
in the same column, and all the rows in each block are also aligned with each other.



Chapter 4: Conditions | 95

The rule is that a shift to the right creates a block (usually after an instruction that ends with a
colon). A shift to the left marks the end of the block.

4.2 else

When there are problems, such as the old car message (Program 4.2), in which the second con-
dition is simply the inverse of the first, we can use another form of if to simplify the programs.
This form includes an else clause to specify what to do if the result of evaluating the condition
is False, without needing a new if. Let's see what the program rewritten to use else would look
like (Program 4.5):

# Program 4.5: New or old car, depending on its age
age = int(input("Enter the age of your car: "))
if age <= 3:
print("Your car is new")
else: @
print("Your car is old") @

won

Notice that, in @, we use ":" after else. This is necessary because else starts a block in the same
way as if. It's important to note that we must write else in the same column as if, that is, with
the same indent. Thus, the interpreter recognizes that else refers to a given if. You will get an
error if you don't align these two structures in the same column.

The advantage of using else is making programs more straightforward since we can express
what to do if the condition specified in if is False. Line @ is only executed if the condition age
<= 31is False.

Let's look at another example with the larger of the two numbers. Program 4.6 but rewritten
to use else:

# Program 4.6: Reads two values and prints which one is larger using an else
a = int(input("First value: "))
b = int(input("Second value: "))
if a > b:
print("The first value is the largest!")
else:
print("The second value is the largest!")

Although equivalent, the second program is easier to read and uses only one condition. Another
advantage is that we didn't have the problem in the case where a is equal to b since we only tested
one condition, and if it's False, we executed the else's code. In Program 4.1, the condition had
a flaw and didn't cover all cases where the first condition was False.

Exercise 45 Run Program 4.5 and try some values. Check that the results are the same as
in Program 4.2.

Exercise 4.6  Write a program that asks the distance a passenger wishes to cover in kilome-
ters. Calculate the ticket price, charging $0.50 per km for trips up to 200 km and $0.45 for
longer trips.



96 | Python from Scratch

Exercise 4.7 Analyze Program 4.3. Does using else in that program make sense? Explain
your answer.

Exercise 4.8 Rewrite Program 4.4 and calculate the Bye operator account using else.

4.3 Nested structures

Our programs will not always be so simple. Often, we'll need to nest multiple ifs to get the
desired behavior from the program. To nest, in this case, is to use one if inside another.

Let's look at another example of calculating the bill for a cell phone from the operator Bye. Bye
company plans are very interesting and offer different prices according to the number of minutes
used per month. For less than 200 minutes, the company charges $0.20 per minute. Between
200 and 400 minutes, the price is $0.18. For more than 400 minutes, the price per minute is
$0.15. Program 4.7 solves this problem:

# Program 4.7: Phone bill with three price ranges
minutes = int(input("How many minutes did you use this month:"))
if minutes < 200: @
price = 0.20 @
else:
if minutes < 400: @
price = 0.18 @
else: @
price = 0.15 @
print(f"You will pay this month: ${minutes * price:6.2f}")

In @, we have the first condition: minutes < 200. If the number of minutes is less than 200, we
assign 0.20 to the price in @. So far, nothing new. Notice that the if of @ is inside the else from
the previous line: it's nested inside the else. The condition of @, minutes < 400, decides whether
we are going to execute line @ or line @. Notice that else from @ is aligned with if from @. At
the end, we calculate and print the price on the screen. Remember that text alignment is very
important in Python.

Take, for example, a situation in which five categories are needed. Let's make a program that
reads a product's category and determines the price using Table 4.1.

Table 4.1: Product and price categories

Category Price
1 10.00
2 18.00
3 23.00
4 26.00
5 31.00




Chapter 4: Conditions | 97

The program line numbers, numbered from 1 to 19, are in the leftmost column of Program
4.8. These numbers only serve to help you understand the following explanation — remember
not to type them.

# Program 4.8: Category x price
1 category = int(input("Enter the product category:"))
2 if category == 1:

3 price = 10

4 else:

5 if category == 2:

6 price = 18

7 else:

8 if category == 3:

9 price = 23

10 else:

11 if category = 4:

12 price = 26

13 else:

14 if category == 5:
15 price = 31

16 else:

17 print("Invalid category, enter a value between 1 and 5!")
18 price = 0

19 print(f"Product price is: ${price:6.2f}")
Notice that alignment became a big problem since we had to move each else to the right.

In Program 4.8, we introduced the concept of input validation. This time, if the user enters an
invalid value, they will receive an error message on the screen. Nothing very practical or beauti-
ful, but for now, it's enough for us to know that we've entered an invalid value.

Let's see the execution of the lines depending on the category entered in Table 4.2.

Table 4.2: Rows executed

Category Lines executed

1 1,2,3,19

2 1,2,4,5,6,19

3 1,2,4,5,7,8,9,19

4 1,2,4,5,7,8,10,11, 12, 19

5 1,2,4,5,7,8,10, 11, 13, 14, 15, 19
others 1,2,4,5,7,8,10,11,13, 14, 16, 17, 18, 19

When we read a program with nested structures, we must pay close attention to view the blocks
correctly. Notice how important alignment is.

Exercise4.9 Trace Program 4.8. Compare your result to that shown in Table 4.2.



98 | Python from Scratch

4.4 elif

Python presents a very interesting solution to the problem of multiple nested if. The elif clause
replaces an else 1if pair, but without creating another level of structure, avoiding unnecessary
displacement to the right problems.

Let's revisit Program 4.8 — this time using elif. See the result in Program 4.9:

# Program 4.9: Category x price, using elif
category = int(input("Enter the product category:"))
if category == 1:

price = 10
elif category == 2:
price = 18
elif category == 3:
price = 23
elif category == 4:
price = 26
elif category == 5:
price = 31

else:
print("Invalid category, enter a value between 1 and 5!")
price = 0

print(f"Product price is: ${price:6.2f}")

Let's look at Program 4.10, which calculated the account price on the LittleTalk and TalkMore
plans, rewritten to use elif:

# Program 4.10: Bye plans with elif
valid = True
plan = input("What's your cell phone plan? ")
if plan == "LittleTalk":
minutes_on_plan = 100
extra = 0.20
price = 50
elif plan == "TalkMore":
minutes_on_plan = 500
extra = 0.15
price = 99
else:
valid = False
if not valid:
print(f"Error: I don't know this plan {plan}")
else:
minutes_consumed = int(input("How many minutes did you consume? "))
print("You will pay:")
print(f"Plan price ${price:10.2f}")
supplement = 0
if minutes_consumed > minutes_on_plan:
supplement = extra * (minutes_consumed - minutes_on_plan)
print(f"Supplement ${supplement:10.2f}")
print(f"Total ${price + supplement:10.2f}")



Chapter 4: Conditions | 99

In Program 4.10, we added a valid variable to indicate whether the plan is known or not. This
avoids repeating the condition in the second if and makes the program more prepared if the
company launches other plans. We used an else at the end of the first if — elif to say that the
plan is invalid or valid == False. In the second 1if, if the plan is unknown, we display an error
message and we don't calculate the price. Other than that, the program does the same thing as
Program 4.4 but uses if-elif-else. An if can have multiple elif but only one else.

Exercise 410 Write a program that reads two numbers and asks what operation you want
to perform. You must be able to calculate sum (+), subtraction (-), multiplication (*), and
division (/). Display the result of the requested operation.

Exercise 4.11  Write a program to approve a bank loan for the purchase of a home. The pro-
gram must ask the price of the house to buy, the salary, and the number of years to pay. The
amount of the monthly installment cannot exceed 30% of the salary. Calculate the install-
ment as the amount of the house to be purchased divided by the number of months to pay.

Exercise4.12  Write a program that calculates the price to pay for electricity. Ask the amount
of kWh consumed and the type of installation: R for residential, I for industrial, and C for
commercial. Calculate the price to pay according to the following table.

Price per type and consumption range

Type Range (kWh) Price
Up to 500 $0.40

Residential
Over 500 $0.65
Up to 1000 $0.55

Commercial
Over 1000 $0.60
Up to 5000 $0.55

Industrial

Over 5000 $0.60

4.5 Inversion of conditions

We have discussed inverse conditions several times, but to make it clearer, let's build a table.

Table 4.3: Inverting conditions

Condition Inverse
A not A
A>B A<=B
A<B A>=B
A== A!=B
Amip e nath
AorB not (A or B)

not A and not B



100 | Python from Scratch

While you don't have to invert conditions in most cases, knowing the inverse of a condition helps
you understand problems and errors in your programs. The negation (not) operator can be used
in all cases where it is necessary to invert a logical result. Remember that the not operator has
a higher priority, and if your condition has several and, or, it will probably need to be placed in
parentheses to be negated correctly. In some programs, it may be interesting to write the else
code instead of the if code block. This is possible by inverting the condition.

Exercise4.13  In the following program, invert the if and else lines, negating the condition.
Add the necessary lines to make it work in Python.
if a > b:
print("a is greater than b")
else:

print("b is greater than a")

Exercise 4.14 Rewrite the following program with if-elif-else. Add the necessary lines to
make it work in Python.
if a < 10:
print("a is less than 10")
if a >= 10 and a < 20:
print("a is greater than 10 and less than 20")
if a >= 20:
print("a is greater than 20")

Exercise 4.15 Rewrite the following program with if-elif-else.
time = int(input("Enter the current time:"))
if time < 12:
print("Good morning!")
if time >=12 and time <=18:
print("Good afternoon!")
if time >= 18:

print("Good evening!")

Exercise 416  Correct the following program:
score = input("Enter your exam scores:")
if score < 4:

print("Unfortunately you didn't pass")
if score < 7:

print("You need to resit the exam")
if score > 7:

print("You passed the year")



Chapter 4: Conditions | 101

4.6 Note of caution when comparing values

When we compare variables of different types, we may have some surprises. For example:

>>> "1" == 1

False

The first "1" is a string and the second is an integer. The result will always be different.

>>> 1,0 == 1
True

Although the first 1.0 is of the float type and the second is of the integer type, Python automati-
cally does the type conversion for you, and the result is True.
>>> ||A|| == ||all

False
Uppercase and lowercase letters are always different.
>>> n A n == ||A||
False
Blank spaces also alter the comparison. Notice that the first " A " has blank spaces before and
after the letter, and the second has no spaces.
>>> 10 / 3 == 3.33
False
Although similar, the result of 10 / 3 is a different number with several 3s after the comma.
>>> 10 / 3 == 3.333333
False
Even with more digits added, it's still different.
Let's see what 10 / 3 looks like when represented as a floating-point number:

>>> 10 / 3

3.3333333333333335

>>> 10 / 3 == 3.3333333333333335
True

Who would have guessed that, after so many 3 digits, we would have a 52 That's a surprise when
using floating-point numbers. You will gradually get used to these minor quirks and imperfec-
tions, but don't be alarmed if the result is slightly different than expected.

>>> 10 [/ 3 ==
True

A // does the integer division, so the result is 3.

>>> 10 [/ 2 ==
True

>>> 10 / 2
5.0

As for the case of 10 / 2, since it is an exact division, even if the result is of the float type, Python
can make the comparison with an integer.



102 | Python from Scratch

TRIVIA

Python has a function called isclose in the math module that allows the approximate
comparison of floating-point numbers.

>>> import math
>>> math.isclose(10 / 3, 3.3, rel_tol=0.1)

True

>>> math.isclose(10 / 3, 3.1, rel_tol=0.1)
True

>>> math.isclose(10 / 3, 3.2, rel_tol=0.1)
True

>>> math.isclose(10 / 3, 3.0, rel_tol=0.1)
False

>>> math.isclose(10 / 3, 3.3, rel_tol=0.01)
False

>>> math.isclose(10 / 3, 3.33, rel_tol=0.01)
True

>>> math.isclose(10 / 3, 3.4, rel_tol=0.1)
True

The optional rel_tol parameter is the accepted relative difference between the two numbers.
In this case, 0.1 represents 10%, 0.01, 1%, etc. The default value is 10-9 (1e-09 in scientific
notation). Don't worry now about import or what an optional parameter is; it will be explained
later in Chapter 8.

In Chapter 7, we will see more functions for cleaning and treating data entered by the user,
such as removing blank spaces and converting everything to lowercase letters. Until then, try
to input data in your programs to avoid generating unnecessary errors. Remember, we are just
getting started. When an error occurs, try to understand its cause. It will help you create the
validation code in the following chapters.



